Malignant H1299 tumour cells preferentially internalize iron-bound inositol hexakisphosphate
نویسندگان
چکیده
In colon enterocytes and in well-differentiated colon cancer CaCo-2 cells, InsP6 (inositol hexakisphosphate) inhibits iron uptake by forming extracellular insoluble iron/InsP6 complexes. In this study, we confirmed that CaCo-2 cells are not able to take up iron/InsP6 but, interestingly, found that the cells are able to internalize metal-free and Cr3+-bound InsP6. Thus, the inability of CaCo-2 cells to take up iron/InsP6 complexes seems to be due to the iron-bound state of InsP6. Since recently we demonstrated that the highly malignant bronchial carcinoma H1299 cells internalize and process InsP6, we examined whether these cells may be able to take up iron/InsP6 complexes. Indeed, we found that InsP6 dose-dependently increased uptake of iron and demonstrated that in the iron-bound state InsP6 is more effectively internalized than in the metal-free or Cr3+-bound state, indicating that H1299 cells preferentially take up iron/InsP6 complexes. Electron microscope and cell fraction assays indicate that after uptake H1299 cells mainly stored InsP6/iron in lysosomes as large aggregates, of which about 10% have been released to the cytosol. However, this InsP6-mediated iron transport had no significant effects on cell viability. This result together with our finding that the well-differentiated CaCo-2 cells did not, but the malignant H1299 cells preferentially took up iron/InsP6, may offer the possibility to selectively transport cytotoxic substances into tumour cells.
منابع مشابه
Siderophore activity of myo-inositol hexakisphosphate in Pseudomonas aeruginosa.
myo-Inositol hexakisphosphate (InsP6), which is found in soil and most, if not all, plant and animal cells, has been estimated to have an affinity for Fe3+ in the range of 10(25) to 10(30) M-1. In this report, we demonstrate that the Fe-InsP6 complex has siderophore activity and is able to reverse the iron-restricted growth inhibition of Pseudomonas aeruginosa by ethylene diamine di(o-hydroxyph...
متن کاملQuantification of Myo-inositol Hexakisphosphate in Alkaline Soil Extracts by Solution 31 P Nmr Spectroscopy and Spectral Deconvolution
Inositol phosphates are the dominant class of organic phosphorus (P) compounds in most soils, but they are poorly understood because they are not easily identified in soil extracts. This study reports a relatively simple technique using solution 31P NMR spectroscopy and spectral deconvolution for the quantification of myo-inositol hexakisphosphate (phytic acid), the most abundant soil inositol ...
متن کاملInositol phosphates in aquatic systems
While there is a considerable body of research on the abundance and behavior of inositol hexakisphosphate in soils, much less is known regarding its behaviour in aquatic systems. The observed physico-chemical behaviour of this organic P species suggests that in marine and freshwaters, it should be complexed and precipitated by major ions such as calcium, magnesium, iron or aluminium, and thus i...
متن کاملPotential of Phytase-Mediated Iron Release from Cereal-Based Foods: A Quantitative View
The major part of iron present in plant foods such as cereals is largely unavailable for direct absorption in humans due to complexation with the negatively charged phosphate groups of phytate (myo-inositol (1,2,3,4,5,6)-hexakisphosphate). Human biology has not evolved an efficient mechanism to naturally release iron from iron phytate complexes. This narrative review will evaluate the quantitat...
متن کاملCellular Internalisation of an Inositol Phosphate Visualised by Using Fluorescent InsP5
When applied extracellularly, myo-inositol hexakisphosphate (InsP6 ) and myo-inositol pentakisphosphate (InsP5 ) can inhibit the growth and proliferation of tumour cells. There is debate about whether these effects result from interactions of InsP6 and InsP5 with intracellular or extracellular targets. We synthesised FAM-InsP5 , a fluorescent conjugate of InsP5 that allows direct visualisation ...
متن کامل